Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient telomere replication in vivo
نویسندگان
چکیده
In Saccharomyces cerevisiae at least five genes, EST1, EST2, EST3, TLC1 and CDC13, are required for telomerase activity in vivo. The telomerase catalytic subunit Est2p and telomerase RNA subunit Tlc1 constitute the telomerase core enzyme. Est1p and Est3p are the other subunits of telomerase holoenzyme. In order to dissect the function of Est3p in telomere replication, we over-expressed and purified recombinant wild-type and mutant Est3 proteins. The wild-type protein, as well as the K71A, E104A and T115A mutants were able to dimerize in vitro, while the Est3p-D49A, -K68A or -D166A mutant showed reduced ability to dimerize. Mutations in Est3p that decreased dimerization also appeared to cause telomere shortening in vivo. Double point mutation of Est3p-D49A-K68A and single point mutation of Est3p-K68A showed similar telomere shortening, suggesting that the K68 residue might be more important for telomerase activity. The ectopic co-expression of K71A or T115A mutant with wild-type Est3p using centromere plasmids caused telomere shortening, while co-expression of the D49A, K68A, D86A or F103A mutants with wild-type Est3p had no effect on telomere length regulation. These data suggested that dimerization is important for Est3p function in vivo.
منابع مشابه
The Est3 protein is a subunit of yeast telomerase
EST1, EST2, EST3 and TLC1 function in a single pathway for telomere replication in the yeast Saccharomyces cerevisiae [1] [2], as would be expected if these genes all encode components of the same complex. Est2p, the reverse transcriptase protein subunit, and TLC1, the templating RNA, are subunits of the catalytic core of yeast telomerase [3] [4] [5]. In contrast, mutations in EST1, EST3 or CDC...
متن کاملAnalysis of telomerase in Candida albicans: potential role in telomere end protection.
Telomerase is a ribonucleoprotein reverse transcriptase responsible for the maintenance of one strand of telomere terminal repeats. Analysis of the telomerase complex in the budding yeast Saccharomyces cerevisiae has revealed the presence of one catalytic protein subunit (Est2p/TERT) and at least two noncatalytic components (Est1p and Est3p). The genome of the pathogenic yeast Candida albicans ...
متن کاملRLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo.
In the yeast Saccharomyces cerevisiae, telomere repeat DNA is assembled into a specialized heterochromatin-like complex that silences the transcription of adjacent genes. The general DNA-binding protein Rap1p binds telomere DNA repeats, contributes to telomere length control and to telomeric silencing, and is a major component of telomeric chromatin. We identified Rap1p localization factor 2 (R...
متن کاملSua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication.
In budding yeast Saccharomyces cerevisiae, telomere length maintenance involves a complicated network as more than 280 telomere maintenance genes have been identified in the nonessential gene deletion mutant set. As a supplement, we identified additional 29 telomere maintenance genes, which were previously taken as essential genes. In this study, we report a novel function of Sua5p in telomere ...
متن کاملCell cycle restriction of telomere elongation
Telomere elongation by telomerase balances the progressive shortening of chromosome ends due to the succession of replication cycles [1] [2]. Telomerase activity is regulated in vivo at its site of action by the telomere itself. In yeast and human cells, the mean telomere length is maintained at a constant value through a cis-inhibition of telomerase by factors specifically bound to the telomer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006